494. Pteridine Studies. Part XXI. ${ }^{1}$ Kinetics of the Reversible Addition of Water to, and Ring-opening of, Pteridine and its Methyl Derivatives.

By Y. Inoue and D. D. Perrin.

Pteridine and its 2-, 4-, and 7 -methyl derivatives add a molecule of water, reversibly, across the 4,3 -double bond to form the corresponding 3,4 -dihydro4 -hydroxy-compounds. First-order rate constants at 20° for the reaction, which shows general acid-base catalysis, have been evaluated by using a rapid-reaction spectrophotometric method. Ring-opening of the cation of 3,4-dihydro-4-hydroxypteridine and its methyl derivatives, catalysed by hydronium ions has also been investigated.
A kinetic study of the reversible, acid-base-catalysed hydration of 2-hydroxypteridine ${ }^{2}$ has now been extended to pteridine and its methyl derivatives, all of which add water reversibly across the $\mathrm{C}_{(4)}, \mathrm{N}_{(3)}$-double bond. The annexed scheme for pteridine shows the reactions and equilibria involved in acid and neutral solutions, ${ }^{3}$ where P denotes pteridine, A is 3,4-dihydro-4-hydroxypteridine (I), and B is 2-aminomethyleneamino-3-formylpyrazine (II). Also, in sufficiently alkaline solutions, the base A forms an anion ($\mathrm{p} K_{\mathrm{a}}$ $11 \cdot 2) .{ }^{3}$ The portions inside the square brackets exist in dynamic equilibrium (except that

$$
\left[\begin{array}{c}
\mathrm{P}+\mathrm{H}^{+} \\
\uparrow \downarrow \\
\left(\mathrm{PH}^{+}\right)
\end{array}\right]+\mathrm{H}_{2} \mathrm{O} \xrightarrow[k_{\mathrm{d}}]{\stackrel{k_{\mathrm{h}}}{\underset{~}{2}}}\left[\begin{array}{c}
\mathrm{A}+\mathrm{H}^{+} \\
\uparrow \downarrow \\
\mathrm{AH}^{+}
\end{array}\right] \underset{k_{\mathrm{rc}}}{\stackrel{k_{\mathrm{ro}}}{\underset{~}{\longrightarrow}}}\left[\begin{array}{c}
\mathrm{B}+\mathrm{H}^{+} \\
\uparrow \downarrow \\
\mathrm{BH}^{+}
\end{array}\right]
$$

the cation of pteridine has never been characterised), while the rate constants, k_{h} and k_{d}, for hydration and dehydration, respectively, and k_{ro} and k_{rc}, for the ring-opening and ringclosing, respectively, are small enough to be obtained from spectrophotometric measurements. Ring-opening is much slower than hydration, and at equilibrium [B] is much less than $[\mathrm{A}] .^{3}$ Also, the equilibrium ratio, $[\mathrm{P}]_{\mathrm{eq}}:[\mathrm{A}]_{\mathrm{eq}}$ is $3 \cdot 5: 1$ in neutral aqueous solutions at 20°. These circumstances make it possible to study hydration and ring-opening separately. Similar considerations apply to 2 -, 4 -, and 7 -methylpteridine for which, at
(I)

20°, the equilibrium ratio $[\mathrm{Me}-\mathrm{pteridine}]_{\mathrm{eq}}:[\mathrm{Me}-\mathrm{A}]_{\mathrm{eq}}$ is $2 \cdot 8: 1$ (ref. 3), $36: 1$ (present work), and $25: 1$ (ref. 3), respectively. The remaining isomer, 6-methylpteridine, is unknown. We have found that, as in hydration of 2 -hydroxypteridine, ${ }^{2}$ at constant wavelength and constant pH , optical density changes due to the reactions in the above scheme obey first-order rate equations.

Experimental

Materials.-We are indebted to Professor A. Albert for providing the pteridine ${ }^{4}$ and its methyl derivatives. ${ }^{5}$ 2-Methylpteridine was stable but pteridine and 4- and 7-methylpteridine were sublimed in vacuo immediately before use. Buffer solutions in the pH range $\mathbf{3 . 4 - 6 . 2}$ were prepared by mixing 0.05 m -sodium borate and 0.05 m -succinic acid. Similarly, for the

[^0]ranges $\mathrm{pH} 6 \cdot 3-9.2$ and $9 \cdot 4-10 \cdot 6,0 \cdot 05 \mathrm{~m}$-sodium borate was added to $0 \cdot 1 \mathrm{~m}$-potassium dihydrogen phosphate and 0.1 m -sodium carbonate, respectively. For work at $\mathrm{pH}>10.6,0.1 \mathrm{~m}$-sodium hydroxide was added to $0 \cdot 1 \mathrm{~m}$-disodium hydrogen phosphate.

Methods.-Reactions were followed spectrophotometrically in a $1-\mathrm{cm}$. quartz cell attached to a rapid-reaction apparatus which consisted essentially of two Nylon syringes connected to the cell by a Perspex tap containing a mixing chamber, so that simultaneous depression of the plungers of the syringes led to their contents being mixed and placed in the cell. ${ }^{2}$ The hydrationdehydration was followed by adding freshly acidified solutions of pteridine to buffer solutions containing sufficient alkali to neutralise the acid in the other solution. Similarly, the ring opening ($\mathrm{AH}^{+} \rightarrow \mathrm{BH}^{+}$) was studied by adding neutral pteridine solutions to moderately concentrated acid solutions. (Under these conditions the initial conversion of pteridine into the hydrated cation, AH^{+}, is too rapid to be measured: from the pH -rate profile, values of $t_{\frac{1}{2}}$ for the hydration should lie between 10^{-3} and 1 sec . for pH values between 0 and 3.) The known ${ }^{3}$ ultraviolet absorption spectra of the reactants permitted choice of suitable wavelengths for following these reactions ($330 \mathrm{~m} \mu$) and the ring-closure of the neutral species, $B(258 \mathrm{~m} \mu)$.

For hydration-dehydration at constant pH and wavelength, the observed change with time in the optical density of the solution is given by ${ }^{2}-\mathrm{d} D / \mathrm{d} t=k_{\mathrm{obs}}\left(D-D_{\text {eq }}\right)$, where $k_{\mathrm{obs}}=$ $k_{\mathrm{h}}+k_{\mathrm{d}}$, and, by an argument similar to that used for 2 -hydroxypteridine, ${ }^{2}$ it may readily be deduced that
and

$$
\begin{aligned}
& k_{\mathrm{h}}=\frac{k_{\mathrm{obs}}\left(K_{\mathrm{a}}{ }^{\mathrm{A}}+a_{\mathrm{H}^{+}}\right)}{K_{\mathrm{a}}{ }^{\mathrm{A}}(K+1)+a_{\mathrm{H}^{+}}} \\
& k_{\mathrm{d}}=\frac{k_{\mathrm{obs}} K K_{\mathrm{a}} \mathrm{a}^{\mathrm{A}}}{K_{\mathrm{a}}{ }^{\mathrm{A}}(K+1)+a_{\mathrm{H}^{+}}},
\end{aligned}
$$

where $K=[\mathrm{P}]_{\mathrm{eq}} /[\mathrm{A}]_{\mathrm{eq}}$, and $K_{\mathrm{a}}{ }^{\mathrm{A}}=(a)_{\mathrm{H}}+[\mathrm{A}] /\left[\mathrm{AH}^{+}\right]$. Hence, provided that K and $K_{\mathrm{a}}{ }^{\mathrm{A}}$ are known, the experimental results yield k_{h} and k_{d}. By making measurements over a range of pH , the pH -rate profile can be obtained. Values of K and $K_{\mathrm{a}}{ }^{\mathrm{A}}$ are available ${ }^{2}$ for all except 4-methylpteridine. In the present work, the equilibrium ratio of anhydrous to hydrated neutral species for 4-methylpteridine was obtained as $36: 1$ from measurements on an 0.01 m solution, by using a Selector Tast polarograph (Atlas-Werke, Bremen). At pH 8.0 and 20°, $E_{\frac{1}{2}}$ for the hydrated and the anhydrous species were -1.26 and -0.83 V , respectively (compare -6.87 and -0.49 v for pteridine ${ }^{6}$ under the same conditions). The $\mathrm{p} K_{\mathrm{a}}$ of " hydrated 4-methylpteridine" (3,4-dihydro-4-hydroxy-4-methylpteridine) was found from rapid spectrophotometric measurements, by using solutions which were freshly acidified and then buffered to known pH values, to be 4.90 at 20°.

Results

Table 1 summarises rate constants, obtained at 20° and an ionic strength of $0 \cdot 1$ (adjusted by addition of sodium chloride), for the reversible hydration of pteridine and the known methylpteridines. In all cases, $\sim 1.6 \times 10^{-4} \mathrm{M}$-solutions in $4 \times 10^{-3} \mathrm{M}$-hydrochloric acid were mixed, within several seconds of preparation, with buffer solutions in the rapid-reaction apparatus and the time-dependent optical-density changes were recorded on a Shimadzu model RS- 27 spectrophotometer. Under these conditions, initial conversion into hydrated species is incomplete, especially with 4- and 7-methylpteridine, but, because first-order kinetics are obeyed, this does not affect the rate measurements. The corresponding pH -reaction rate profiles for hydration are shown in Fig. 1. Results for pteridine between pH 6 and 8 are in fair agreement with values obtained by Komenda and Laskafeld ${ }^{6}$ who used polarography.

The lines in Fig. 1 are for the equations

$$
k_{\mathrm{h}}=\alpha a_{\mathrm{H}^{+}}+\beta+\gamma / a_{\mathrm{H}^{+}},
$$

where these constants have the following values:

	α	$10^{5} \beta$	$10^{13} \gamma$		α	$10^{5} \beta$	$10^{13} \gamma$
Pteridine	354	$2 \cdot 40$	$4 \cdot 06$	4-Methylpteridine	191	0.6	$0 \cdot 81$
2-Methylpteridine	1079	$3 \cdot 54$	1.90	7-Methylpteridine	174	0.90	$1 \cdot 13$

Minima in reaction rates occur at $\mathrm{pH} 7 \cdot 47,7 \cdot 88,7 \cdot 69$, and $7 \cdot 59$, respectively.

[^1]Table 1.
First-order rate constants (sec^{-1}) for hydration and dehydration at 20° and $r=0.1$.

pH	$10^{4} k_{\text {obs }}$	$10^{4} k_{\text {h }}$	$10^{4} k_{\text {d }}$	pH	$10^{4} k_{\text {obs }}$	$10^{4} k_{\mathrm{b}}$	$10^{4} k_{\text {d }}$	pH	$10^{4} k_{\text {obs }}$	$10^{4} k_{\text {h }}$	$10^{4} k_{\text {d }}$
Pteridine											
$3 \cdot 69$	1060	841	219	6.75	$4 \cdot 41$	0.989	$3 \cdot 42$	$9 \cdot 14$	$30 \cdot 0$	$6 \cdot 68$	$23 \cdot 3$
$3 \cdot 97$	790	541	249	$7 \cdot 17$	$2 \cdot 88$	0.646	$2 \cdot 23$	$9 \cdot 30$	$48 \cdot 9$	$10 \cdot 9$	$38 \cdot 0$
$4 \cdot 02$	509	338	171	$7 \cdot 35$	$2 \cdot 58$	0.575	$2 \cdot 00$	$9 \cdot 50$	$67 \cdot 8$	$15 \cdot 1$	$52 \cdot 7$
$4 \cdot 36$	385	198	187	$7 \cdot 79$	$2 \cdot 62$	0.569	$2 \cdot 05$	$9 \cdot 69$	96.6	21.5	$75 \cdot 1$
$4 \cdot 55$	271	$75 \cdot 0$	196	$8 \cdot 04$	$3 \cdot 06$	0.682	$2 \cdot 38$	9.85	141	31.4	110
$4 \cdot 76$	165	61.4	104	$8 \cdot 41$	$6 \cdot 46$	1.26	$5 \cdot 20$	10.05	210	$46 \cdot 8$	163
$4 \cdot 94$	126	$41 \cdot 4$	$84 \cdot 6$	$8 \cdot 77$	$13 \cdot 3$	$2 \cdot 97$	$10 \cdot 3$	$10 \cdot 19$	274	$61 \cdot 1$	213
$5 \cdot 14$	$86 \cdot 6$	$25 \cdot 3$	$61 \cdot 3$	$8 \cdot 98$	$21 \cdot 3$	$4 \cdot 74$	$16 \cdot 6$	$10 \cdot 37$	428	$95 \cdot 3$	333
$5 \cdot 86$	$23 \cdot 6$	$5 \cdot 61$	$18 \cdot 0$					$10 \cdot 50$	584	130	454
$6 \cdot 35$	$9 \cdot 47$	$2 \cdot 14$	$7 \cdot 33$					$10 \cdot 60$	770	172	598
2-Methylpteridine											
$4 \cdot 36$	661	546	115	$7 \cdot 57$	$2 \cdot 74$	0.726	2.01	$9 \cdot 85$	$92 \cdot 6$	$24 \cdot 4$	$68 \cdot 2$
$4 \cdot 55$	427	325	102	$7 \cdot 79$	$2 \cdot 59$	$0 \cdot 686$	1.90	$10 \cdot 05$	136	$35 \cdot 8$	100
$4 \cdot 76$	333	225	108	$8 \cdot 22$	2.90	$0 \cdot 764$	$2 \cdot 14$	$10 \cdot 19$	123	33-1	89.9
4.94	205	124	81	$8 \cdot 58$	$5 \cdot 00$	$1 \cdot 32$	$3 \cdot 68$	$10 \cdot 37$	193	$50 \cdot 8$	142
$5 \cdot 14$	116	$60 \cdot 4$	$55 \cdot 6$	8.77	$8 \cdot 13$	$2 \cdot 14$	5.99	$10 \cdot 50$	277	$73 \cdot 0$	204
$5 \cdot 86$	$44 \cdot 0$	$14 \cdot 6$	$29 \cdot 4$	8.98	$12 \cdot 0$	$3 \cdot 16$	$8 \cdot 84$	$10 \cdot 62$	324	$85 \cdot 3$	239
$6 \cdot 35$	$19 \cdot 2$	$5 \cdot 51$	$13 \cdot 7$	$9 \cdot 14$	$17 \cdot 5$	$4 \cdot 60$	$12 \cdot 9$	11.00	855	225	630
$6 \cdot 75$	11.4	$3 \cdot 12$	$8 \cdot 28$	$9 \cdot 30$	26.9	$7 \cdot 08$	$19 \cdot 8$	11.24	1380	363	1017
$7 \cdot 15$	$4 \cdot 40$	1.18	$3 \cdot 22$	$9 \cdot 50$	$41 \cdot 7$	11.0	30.7	11.43	2030	535	1495
$7 \cdot 35$	3.78	1.01	$2 \cdot 77$	9.69	$62 \cdot 0$	$16 \cdot 3$	$45 \cdot 7$	11.63	3080	811	2269
4-Methylpteridine											
$4 \cdot 36$	~ 800	~ 88.3	~ 712	$7 \cdot 35$	9.65	$0 \cdot 262$	$9 \cdot 39$	$9 \cdot 30$	$66 \cdot 4$	1.81	$64 \cdot 6$
$4 \cdot 76$	498	31.2	467	$7 \cdot 79$	$5 \cdot 39$	$0 \cdot 146$	$5 \cdot 24$	$9 \cdot 50$	82.9	$2 \cdot 26$	$80 \cdot 6$
$5 \cdot 14$	333	$14 \cdot 0$	319	8.04	$5 \cdot 84$	$0 \cdot 159$	$5 \cdot 68$	$9 \cdot 69$	122	$3 \cdot 32$	119
$5 \cdot 86$	127	$3 \cdot 83$	123	$8 \cdot 20$	6.79	$0 \cdot 185$	$6 \cdot 60$	9.85	176	$4 \cdot 79$	171
$6 \cdot 55$	$42 \cdot 5$	1.18	$42 \cdot 4$	$8 \cdot 58$	14.5	$0 \cdot 395$	$14 \cdot 1$	10.05	326	$12 \cdot 5$	313
$6 \cdot 75$	$29 \cdot 3$	$0 \cdot 807$	$28 \cdot 5$	8.98	$31 \cdot 1$	$0 \cdot 847$	$30 \cdot 3$	$10 \cdot 37$	595	$16 \cdot 2$	579
6.95	$19 \cdot 1$	$0 \cdot 522$	$18 \cdot 6$	$9 \cdot 14$	$47 \cdot 0$	1.23	$45 \cdot 8$	$10 \cdot 50$	1010	$27 \cdot 5$	982
7-Methylpteridine											
$4 \cdot 36$	692	107	585	$7 \cdot 58$	4.40	$0 \cdot 169$	$4 \cdot 23$	$10 \cdot 19$	608	$23 \cdot 4$	585
$4 \cdot 55$	617	71.9	545	$7 \cdot 79$	$4 \cdot 57$	$0 \cdot 176$	$4 \cdot 39$	$10 \cdot 37$	544	20.9	523
$4 \cdot 76$	343	$30 \cdot 2$	313	$8 \cdot 22$	$6 \cdot 68$	$0 \cdot 257$	$6 \cdot 42$	$10 \cdot 50$	708	$27 \cdot 2$	681
$4 \cdot 94$	281	$20 \cdot 1$	261	$8 \cdot 58$	13.4	0.515	12.9	$10 \cdot 62$	1050	$40 \cdot 5$	1009
$5 \cdot 14$	214	$12 \cdot 7$	201	8.98	$35 \cdot 2$	$1 \cdot 36$	$33 \cdot 8$	$11 \cdot 00$	2320	$89 \cdot 3$	2231
$5 \cdot 86$	71.7	$3 \cdot 08$	$68 \cdot 6$	$9 \cdot 30$	$72 \cdot 3$	$2 \cdot 78$	$69 \cdot 5$	$11 \cdot 24$	3730	144	3586
$6 \cdot 35$	$30 \cdot 0$	$1 \cdot 19$	$28 \cdot 8$	9.50	126	$4 \cdot 84$	$121 \cdot 2$	$11 \cdot 43$	5570	214	5356
$6 \cdot 75$	$13 \cdot 6$	0.532	$13 \cdot 1$	9.85	262	$10 \cdot 1$	252	11.63	7100	273	6827
6.95	10.5	0.406	$10 \cdot 1$	10.05	379	$14 \cdot 6$	364	11.79	8790	338	8452
$7 \cdot 15$	$6 \cdot 29$	$0 \cdot 244$	$6 \cdot 05$								

Table 2.
Catalysis of the hydration-dehydration of pteridine at 20° in 4 -ethylmorpholine buffers.

Buffer concn. (M)	Added electrolyte	I	pH	$10^{4} k_{\text {obs }}$	$10^{4} k$ (predicted *)
0.042	-	0.025	7.58	$1 \cdot 67$	(1-67)
0.042	$0.375 \mathrm{~m}-$ Boric acid	0.084	$7 \cdot 84$	$7 \cdot 41$	1.95
0.042	$0.375 \mathrm{~m}-\mathrm{NaHCO}_{3}$	0.400	7.84	134.5	$2 \cdot 03$
0.042	$0.0375 \mathrm{M}-\mathrm{NaHCO}_{3}$	0.063	$7 \cdot 85$	$13 \cdot 7$	1.94
$0 \cdot 042$	0.417 m -Phosphate \dagger	1.09	7.38	$10 \cdot 3$	$2 \cdot 02$
$0 \cdot 042$	$0.417 \mathrm{~m}-\mathrm{NaOAc}$	0.442	$7 \cdot 74$	$2 \cdot 64$	1.84
0.042	$0.417 \mathrm{M}-\mathrm{NH}_{4} \mathrm{Cl}$	0.442	7.68	$2 \cdot 34$	1.83
0.833	-	0.525	$7 \cdot 77$	6.81	1.95

* From value in parentheses by using $\log k_{\text {obs }}=\log k_{0}+0.06 I$, and correction for differences in $\mathrm{pH} . \quad \dagger\left[\mathrm{KH}_{2} \mathrm{PO}_{4}\right]:\left[\mathrm{K}_{2} \mathrm{HPO}_{4}\right]=2: 7$.
Similar measurements were made on acidified pteridine solutions adjusted near to pH 7.9 by means of a $0 \cdot 1 \mathrm{~lm}-4$-ethylmorpholine buffer which contained sodium chloride to vary the ionic strength from 0.21 to 0.97 . The value of $k_{\text {obs }}$ showed only a slight dependence on ionic strength, the best straight lines through the experimental points being given by $\log k_{\mathrm{obs}}=\log k_{0}+0.06 I$. A comparable small primary salt effect was found for hydration of 2 -hydroxypteridine. ${ }^{2}$ However, much larger effects were observed when sodium chloride was replaced by some other
electrolytes. The results summarised in Table 2, especially those for bicarbonate and phosphate ions, boric acid, and 4 -ethylmorpholine, indicate that the reaction shows general acidbase catalysis. Catalysis by boric acid and bicarbonate ion has been observed in similar studies of 2 -hydroxypteridine. ${ }^{2}$

The Ring-opening, $\mathrm{AH}^{+} \longrightarrow \mathrm{BH}^{+}$.-Table 3 summarises results of measurements of reaction rates for hydrated pteridine and its methyl derivatives. These indicate that the ring-opening is strongly catalysed by hydronium ion, but the rate does not vary directly with the hydrochloric

Fig. 1. pH-reaction rate profiles at 20° and $I=0 \cdot 1$ for the reversible hydration of (O) pteridine, $(\times$) 2-methylpteridine, and $(+$) 7-methylpteridine.

Fig. 2. Variation of k_{ro} with hydrochloric acid concentration, at constant ionic strength ($I=2.50$ by addition of sodium chloride) and at $20.0^{\circ} \pm 0.2^{\circ}$, for hydrated forms of (a) pteridine ($x=10^{4}$), (b) 2methylpteridine $\left(x=5 \times 10^{3}\right)$, and (c) 4-methylpteridine $\left(x=10^{2}\right)$.

Table 3.
First-order rate constants $\left(\mathrm{sec} .^{-1}\right.$) for the ring-opening of hydrated pteridine and its methyl derivatives.

acid concentration unless the ionic strengths of the solutions are kept constant. When this is done, by addition of an " inert" electrolyte, a linear relation is found (Fig. 2). Similarly, the results in Table 3 show that, in the absence of added salt, the logarithms of the rate constants vary linearly with the Hammett acidity function, H_{0}, if correction is made for the uncatalysed component of the rate constants. Relevant data are summarised in Table 4.

Table 4.
Dependence on H_{0} of rate constants for ring-opening. Values of a and b relate to the equation, $10^{4} k_{\mathrm{ro}}=a+b h_{0}$, where $h_{0}=\operatorname{antilog}\left(-H_{0}\right)$.*

	a	b	Temp.
Pteridine	1.00	$0 \cdot 458$	$12.5{ }^{\circ}$
Pteridine.	$3 \cdot 00$	$1 \cdot 24$	$20 \cdot 3 \pm 0 \cdot 2$
Pteridine .	$10 \cdot 8$	$3 \cdot 03$	$30 \cdot 5 \pm 0 \cdot 2$
2-Methylpteridine	0.90	$2 \cdot 22$	$20 \cdot 1 \pm 0 \cdot 2$
4-Methylpteridine	35	56	$14.4 \pm 0 \cdot 3$
4-Methylpteridine	90	173	$20 \cdot 2 \pm 0 \cdot 1$
7-Methylpteridine	11	13.0	19.9

* Values of H_{0} for hydrochloric acid solutions are as given by Paul and Long (Chem. Rev., 1957, $57,1)$.

In the conditions of the measurements, the hydrated species are protonated, so that the values of a for the uncatalysed reaction relate to the cations. There is no evidence that the neutral molecules undergo this reaction: instead, the ring-opened species B slowly cyclises to A. Approximate values for the first-order rate constant, k_{rc}, for the latter reaction at 20° are $1.04 \times 10^{-4}, 1.01 \times 10^{-4}, 2.37 \times 10^{-4} \mathrm{sec} .^{-1}$, at $\mathrm{pH} 5 \cdot 26,7.58$, and 8.95 , respectively. These constants have been obtained from changes with time in the optical density at $258 \mathrm{~m} \mu$ of a pteridine solution in 0.01 m -hydrochloric acid, which, after being kept for $4 \frac{1}{2} \mathrm{hr}$., was added to appropriate buffers. No corrections have been applied for the effect of partial protonation of B at $\mathrm{pH} 5 \cdot 26$ or for the fact that, at $\mathrm{pH} 7 \cdot 58, k_{\text {obs }}$ is comparable with the rate constant for the reaction, $\mathrm{A} \rightleftharpoons P$.

Discussion

The measured rate constants, k_{h} and k_{d}, for hydration and dehydration of pteridine and its methyl derivatives are, in principle, composite because of the dynamic equilibrium between corresponding pairs of cations and neutral molecules. However, the $\mathrm{p} K_{\mathrm{a}}$ values of the anhydrous species lie so far below the pH range in which hydration is studied that the cation, PH^{+}, can be neglected in discussing the stoicheiometry of the reaction. Thus, from the results in Table 2 and Fig. 1, the following catalytic coefficients can be found to apply to the hydration of the neutral molecules of pteridine at 20° :

$$
\begin{aligned}
k_{\mathrm{h}}= & 354\left[\mathrm{H}^{+}\right]+5 \cdot 9 \times 10^{-7}\left[\mathrm{H}_{2} \mathrm{O}\right]+59\left[\mathrm{OH}^{-}\right]+3.5 \times 10^{-2}\left[\mathrm{NaHCO}_{3}\right]+ \\
& 1 \cdot 5 \times 10^{-3}\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]+5 \cdot 1 \times 10^{-4}[4 \text {-ethylmorpholine (mixture of } \\
& \text { cation and neutral molecule in ratio } 5: 3)]
\end{aligned}
$$

On the other hand, in the dehydration studies, conditions include pH regions where the concentrations of the cation, AH^{+}, are comparable with, or much greater than, those of the neutral molecule. The levelling-out of values of k_{d}, but not of k_{h}, as solutions are made more acid is thus explained if the hydronium-ion catalysis of the reactions proceeds only by formation of the cations, AH^{+}and PH^{+}, respectively: in fact, the pH -reaction rate profiles for k_{d} enable roughly correct estimates of $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{A}}$ to be made in this way. Hence, the quantity, $k_{\mathrm{d}}\left([\mathrm{A}]+\left[\mathrm{AH}^{+}\right]\right)$, can be expressed as $k_{\mathrm{d}}{ }^{\prime}[\mathrm{A}]+k_{\mathrm{d}}{ }^{\prime \prime}\left[\mathrm{OH}^{-}\right][\mathrm{A}]+k_{\mathrm{d}}{ }^{\prime \prime \prime}\left[\mathrm{AH}^{+}\right]$, where the k 's are constants. From $K_{\mathrm{a}}{ }^{\mathrm{A}}=\left(a_{\mathrm{H}^{+}}\right)[\mathrm{A}] /\left[\mathrm{AH}^{+}\right]$, this leads to

$$
k_{\mathrm{d}}\left(K_{\mathrm{a}}^{\mathrm{A}}+a_{\mathrm{H}^{+}}\right)=k_{\mathrm{d}}{ }^{\prime \prime} a_{\mathrm{H}^{+}}+k_{\mathrm{d}}{ }^{\prime} K_{\mathrm{a}^{\mathrm{A}}}+k_{\mathrm{d}}{ }^{\prime \prime} K_{\mathrm{w}} K_{\mathrm{a}}{ }^{\mathrm{A}} / a_{\mathrm{H}^{+}} .
$$

Constants obtained by fitting the data in Table \mathbf{l} are summarised in Table 5. Results for pteridine, shown in Fig. 3, are typical.

Comparison of the appropriate constants shows that the introduction of a 2 -methyl group into pteridine makes only a small difference to the rates of hydration and dehydration of the neutral molecule. A 4- or a 7 -methyl group decreases the rate of hydration to about $\frac{1}{4}$ and $\frac{1}{3}$, respectively, while at the same time increasing three-fold the rate of dehydration. Comparable effects are found for 4 - and 7 -methylpteridine in the rate of dehydration of hydrated cation (increased three-fold) and of the hydroxyl-ion-catalysed hydration (reduced to $\frac{1}{5}$ and $\frac{1}{4}$, respectively) and dehydration (increased 80% and 50%) of the neutral molecule. In all three cases, 2 -methylpteridine gives rates roughly one-half of those for pteridine. It is suggested that a 7 -methyl group, by its inductometric effect on $\mathrm{C}_{(4)}$, helps to stabilise the formation of a carbonium ion, thereby opposing the addition of the nucleophilic hydroxyl group to 7 -methylpteridine and facilitating its removal from the hydrated

Fig. 3. pH-reaction rate profile for the dehydration of " hydrated pteridine" (3,4 -dihydro- 4 -hydroxypteridine). The solid line is calculated from the constants given in Table 5.

species. A 4-methyl group produces a similar result because of inductive and steric effects, in agreement with the observation that tertiary alcohols ionise more readily to carbonium

Table 5.
Rate constants for the dehydration of hydrated pteridine (3,4-dihydro-4-hydroxypteridine) and its methyl derivatives at 20° and $I=0 \cdot 1$.

	$10^{5} k_{\mathrm{d}}{ }^{\prime}$	$k_{\text {d }}{ }^{\prime \prime}$	$10^{-2} k_{\mathrm{d}}{ }^{\prime \prime}$
Pteridine	$8 \cdot 45$	210	$2 \cdot 36$
2-Methylpteridine	$9 \cdot 9$	84.9	$1 \cdot 11$
4-Methylpteridine	$2 \cdot 25$	380	$9 \cdot 1$
7-Methylpteridine	22.4	313	$6 \cdot 3$

ions than do secondary ones. On the other hand, a 2 -methyl group cannot affect interaction at $\mathrm{C}_{(4)}$ inductometrically or sterically and its inductive effect would also be quite small. It could, however, interfere sterically if reaction proceeds through a cyclic activated complex of the type postulated for 2 -hydroxypteridine, ${ }^{2}$ in which case it would reduce to the same extent the rates of the forward- and back-reactions, as found.

The uncatalysed ring-opening for hydrated pteridine showed a negative salt effect, $\log k_{\mathrm{ro}}$ decreasing by $0.05 I$ as the ionic strength was varied from 0.01 to 2.8 by addition of sodium chloride. In m-hydrochloric acid, addition of sodium chloride to vary the ionic strength from 1 to $3 \cdot 0$ increased $\log k_{\mathrm{ro}}$ by $0 \cdot 10 I$. Replacement of the sodium chloride by other salts gave increases varying with the cations in the order $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{NH}_{4}{ }^{+}$. (At $I=2 \cdot 2, k_{\mathrm{ro}}$ varied from $1 \cdot 11 \times 10^{-3}$ for lithium bromide to 4.84×10^{-4} for ammonium
chloride, as against 4.21×10^{-4} for no added salt. Up to this ionic strength, addition of barium chloride gave a negative salt effect; at higher concentrations the effect was positive.) These differences may reflect changes in H_{0} due to variations in $f_{\mathrm{H}+}$ and $a_{\mathrm{H}, \mathrm{O}}$; the latter in particular, may be affected by differences in the hydration numbers of the ions.

Thermodynamic data for the ring-opening of hydrated pteridine and its methyl derivatives in 0.5 M -hydrochloric acid have been derived from the temperature effects on the rates, by using the equation,

$$
k_{\mathrm{ro}}=(\boldsymbol{k} T / \boldsymbol{h}) \exp \left(-\Delta G^{\ddagger} / \boldsymbol{R} T\right)=(\boldsymbol{k} T / \boldsymbol{h}) \exp \left(-\Delta H^{\ddagger} / \boldsymbol{R} T\right) \exp \left(\Delta S^{\ddagger} / \boldsymbol{R}\right),
$$

where \boldsymbol{k} is the Boltzmann constant, \boldsymbol{h} is the Planck constant, and $\Delta G^{\ddagger}, \Delta S^{\ddagger}, \Delta H^{\ddagger}$, are the free energy, entropy, and heat of activation. Results are summarised in Table 6.

The values of ΔH^{\ddagger} in this Table can be represented to within $\pm 0.2 \mathrm{kcal}$. mole ${ }^{-1}$ by the equation, $\Delta H^{\ddagger}=21.78+0.450 \Delta S^{\ddagger}$. This linear relationship indicates that the ring-opening is one for which the isokinetic relationship ${ }^{7,8}$ holds. The isokinetic temperature is $450^{\circ} \mathrm{K}$.

Table 6.
Thermodynamic data, calculated at 20°, for the ring-opening of pteridine and its methyl derivatives.

	Temp. range	$\Delta H \ddagger$ (kcal. mole ${ }^{-1}$)	$\Delta S \ddagger$ (cal. deg. ${ }^{-1} \mathrm{~mole}^{-1}$)
Pteridine.	11.4-36.7 ${ }^{\circ}$	21.8 ± 0.3	0.00 ± 0.06
2-Methylpteridine	10.7-39.8	22.95 ± 0.04	$+2.72 \pm 0.06$
4-Methylpteridine	8.0-24.7	$15 \cdot 7 \pm 0.6$	-13.25 ± 0.08
7-Methylpteridine	7-7-35-4	$18 \cdot 8 \pm 0.7$	-7.04 ± 0.08

It was previously suggested ${ }^{3}$ that the reported ${ }^{9} \mathrm{p} K_{\mathrm{a}}$ of $2 \cdot 94$, obtained by direct titration of 4 -methylpteridine, is the true pK of 4 -methylpteridine. The present results indicate that this is not correct. The value is probably a composite constant involving both hydrated and anhydrous species, in the same way as similar constants for pteridine and its 2 - and 7 -methyl derivative. Thus the $\mathrm{p} K$ of 4 -methylpteridine must lie well below 2.9 , and that of pteridine (for which a yalue of 2.6 was suggested) must be still lower. Failure to observe the cation of the hydrated species, 3,4-dihydro-4-hydroxy-4-methylpteridine, was due to its rapid conversion into the ring-opened species, the uncatalysed reaction being 30 times, and the hydronium-ion-catalysed reaction 140 times, as fast as the corresponding reactions for pteridine.

The authors are grateful to Professor A. Albert for his interest. One of them (Y. I.) expresses his thanks for an Australian National University Scholarship.

Department of Medical Chemistry, Institute of Advanced Studies, Australian National University, Canberra, Australia.
[Received, October 29th, 1962.]

[^2]
[^0]: ${ }^{1}$ Part XX, Inoue and Perrin, J., 1962, 2600.
 ${ }_{2}$ Inoue and Perrin, J. Phys. Chem., 1962, 66, 1689.
 ${ }^{3}$ Perrin, J., 1962, 645.
 4 Albert, Brown, and Cheeseman, J., 1951, 474.
 ${ }^{5}$ Albert, Brown, and Wood, J., 1954, 3832.

[^1]: ${ }^{6}$ Komenda and Laskafeld, Coll. Сзech. Chem. Comm., 1962, 27, 199.

[^2]: 7 Leffler, J. Org. Chem., 1955, 20, 1202.
 ${ }^{8}$ Blackadder and Hinshelwood, $J ., 1958,2728$.
 ${ }^{4}$ Brown and Mason, $J ., 1956,3443$.

